

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 5963–5965

Iridium-catalyzed carbonyl allylation by allyl ethers with tin(II) chloride

Yoshiro Masuyama* and Masanori Marukawa

Department of Chemistry, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan

Received 28 May 2007; revised 18 June 2007; accepted 21 June 2007 Available online 24 June 2007

Abstract—3-Alkoxypropenes, namely allyl ethers such as allyl butyl ether, allyl 2-hydroxypropyl ether, and diallyl ether, serve as reagents for the allylation of aldehydes with tin(II) chloride in the presence of a catalytic amount of $[IrCl(cod)]_2$ in THF and H_2O at 50 °C to produce the corresponding homoallylic alcohols. 2007 Elsevier Ltd. All rights reserved.

Allyl ethers are poor reagents for palladium-catalyzed allylic alkylation^{[1](#page-1-0)} or carbonyl allylation^{[2](#page-1-0)} via the formation of a π -allylpalladium complex.^{[3](#page-1-0)} We have found that tin(II) chloride mediates the elimination of a poor leaving group, the hydroxy group, for preparing π -allylmetal intermediates from allylic alcohols and metal complexes in palladium, 4 rhodium, 5 or iridium-catalyzed 6 carbonyl allylations. Thus, we hoped that alkoxy groups of 3 alkoxypropenes, namely allyl ethers, would also be eliminated by tin(II) chloride to prepare π -allylmetal complexes. We here report that allyl ethers become versatile reagents for palladium, rhodium, or iridiumcatalyzed carbonyl allylations through the mediation of tin(II) chloride.

OBu + RCHO **1a** catalyst SnCl₂ THF/H₂O 50 °C R OH **2** (1)

The reactivity of allyl butyl ether (1a) was investigated for the allylation of benzaldehyde or heptanal with tin(II) chloride in the presence of a catalytic amount of $PdCl_2(PhCN)_2$, $[RhCl(cod)]_2$, or $[IrCl(cod)]_2$ in THF–H₂O at 50 °C (Eq. 1). The results are summarized in [Table 1](#page-1-0). A typical procedure (entry 3) is described in Ref. [8](#page-1-0) $[IrCl(cod)]_2$ catalyst seems to be superior to $PdCl₂(PhCN)₂$ or $[RhCl(cod)]₂$ catalyst. No allylation occurred without both the catalysts and tin(II) chloride. The allylations at room temperature and those without $H₂O$ were quite slow.

The iridium-catalyzed allylations of some aldehydes with 1a were carried out under the same conditions as those of entries 3 and 6 in [Table 1](#page-1-0) to produce the corresponding homoallylic alcohols 2 ([Table 2](#page-1-0), Eq. 2, entries 1–6). The allylation of cinnamaldehyde had a low yield at 50° C in spite of consuming the aldehyde, and was slow at 25 °C (entries 2 and 3). The reactions of α -substituted aldehydes were quite slow (entries 5 and 6). Allyl 2-hydroxypropyl ether (1b), allyl glycidyl ether (1c), and allyl phenyl ether (1d) can also be used for the iridium-catalyzed carbonyl allylations ([Table 2,](#page-1-0) Eq. 2, entries 7–15). The leaving ability of phenoxy group seems to be superior to that of alkoxy groups, similarly to the usual formation of π -allylmetal complexes (entries 14 and 15 15).¹

^{*} Corresponding author. Tel.: +81 3 3238 3453; fax: +81 3 3238 3361; e-mail: y-masuya@sophia.ac.jp

^{0040-4039/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.06.117

Entry	R	Catalyst/mmol	Time (h)	2. Yield ^a $(\%$
	Ph	$PdCl2(PhCN)2/0.02$	24	55
2	Ph	$[RhCl(cod)]_2/0.01$	24	60
3	Ph	$[IrCl(cod)]_2/0.01$	24	84
4	C_6H_{13}	$PdCl2(PhCN)2/0.02$	48	29
5	C_6H_{13}	$[RhCl(cod)]_2/0.01$	48	
6	C_6H_{13}	$[IrCl(cod)]_2/0.01$	48	63

Table 1. Allylation of PhCHO and $CH₃(CH₂)₅CHO$ with 1a

^a Isolated vields based on aldehydes. The structures were confirmed by the comparison of spectroscopic values (IR and ¹H NMR) with those of authentic samples. 4 ,

Table 2. Iridium-catalyzed carbonyl allylation with 1

Entry	Allylic ether/mmol	R^2	Time (h)	2 , Yield ^a $(\%)$
1	1a/1.2	$4-CIC6H4$	24	71
2	1a/1.2	$PhCH=CH$	24	32
3 ^b	1a/1.2	$PhCH=CH$	72	33
4	1a/1.2	PhCH ₂ CH ₂	24	63
5	1a/1.2	$c - C_6H_{11}$	48	8
6	1a/1.2	$PhCH(CH_3)$	48	19
7	1 _b /1.2	Ph	46	85
8	1 _b /1.2	$4-CIC6H4$	45	63
9	1 _b /1.2	$PhCH=CH$	48	25
10	1 _b /1.2	PhCH ₂ CH ₂	48	60
11	1 _b /1.2	C_6H_{13}	48	48
12	1c/1.2	Ph	24	74
13	1c/1.2	C_6H_{13}	24	57
14	1d/1.2	Ph	24	91
15	1d/1.2	C_6H_{13}	24	93

^a Isolated yields based on aldehydes. The structures were confirmed by the comparison of spectroscopic values (IR and ¹H NMR) with those of authentic samples.4,7

 b The reaction was carried out at 25 °C.

Diallyl ether (3) can also be applied to the iridium-catalyzed carbonyl allylations, as summarized in Table 3 (Eq. [3\)](#page-0-0). Both allyl moieties in 3 serve for the carbonyl allylation (entries 3–7). The allylation of benzaldehyde with 3 also proceeded using $PdCl₂(PhCN)₂$ or $[RhCl(cod)]_2$ as a catalyst to afford 1-phenyl-3-buten-1-ol (2, $R = Ph$) in 51% or 53% yield, respectively (entries 1 and 2). The use of four equimolar amounts of tin(II) chloride to 3 in the palladium-catalyzed allylation enhanced the yield (entry 1).

Table 3. Allylation of aldehydes with 3

Entry	aldehyde	Catalyst/mmol	Time (h)	$2.$ Yield ^a $(\%)$
	PhCHO	$PdCl2(PhCN)2/0.02$	24	$51(76)^b$
2	PhCHO	$[RhCl(cod)]_2/0.01$	24	53
3	PhCHO	$[IrCl(cod)]_2/0.01$	24	69
4	$4-CIC6H4CHO$	$[IrCl(cod)]_2/0.01$	21	87
5	PhCH=CHCHO	$[IrCl(cod)]_2/0.01$	46	38 ^c
6	$Ph(CH2)$, CHO	$[IrCl(cod)]_2/0.01$	24	94
7	C_6H_{13}	$[IrCl(cod)]_2/0.01$	24	64

^a Isolated yields based on aldehydes. The structures were confirmed by the comparison of spectroscopic values (IR and ¹H NMR) with those of authentic samples.4,7

 b The figure in parentheses is the yield with 2.4 mmol of SnCl₂.

^cThe reaction was carried out at 25 °C.

Scheme 1.

A plausible mechanism is illustrated in Scheme 1. Alkoxy groups such as butoxy, 2-hydroxypropoxy, glycidyloxy, and allyloxy would function as leaving groups with the assistance of tin(II) chloride in the formation of π -allylmetal complexes A from allyl ethers 1. And then the π -allylrhodium or -iridium complexes A (M = Rh or Ir) might directly react with aldehydes to produce 3-buten-1-ols 2, similarly to the rhodium- or iridiumcatalyzed carbonyl allylation by allylic alcohols with tin(II) chloride,^{5,6,9,10} and π -allylpalladium complexes $A (M = Pd)$ might be transformed into allyltin intermediates B that would cause nucleophilic attack to aldehydes to produce 3-buten-1-ols 2, similarly to the palladium-catalyzed carbonyl allylations by allylic alcohols and esters with $\text{tin}(II)$ chloride.^{2,11} In the case of diallyl ether (3), a second allyl moiety ($R^1 =$ allyl) in C would be converted to a π -allylmetal complex with the assistance of another tin(II) chloride to cause second nucleophilic addition to aldehydes.

References and notes

- 1. (a) Trost, B. M.; Verhoeven, T. R. In Comprehensive Organometallic Chemistry; Pergamon Press: Oxford, 1982; Vol. 8, p 799; (b) Tsuji, J. In Palladium Reagents and Catalysts, Innovations in Organic Synthesis; Wiley: New York, 1995; p 290.
- 2. (a) Masuyama, Y. J. Synth. Org. Chem. Jpn. 1992, 50, 202; (b) Masuyama, Y. In Advances in Metal-Organic Chemistry; Liebeskind, L. S., Ed.; JAI Press: Greenwich, CT, 1994; Vol. 3, p 255; (c) Tamaru, Y. In Perspectives in Organopalladium Chemistry for the XXI Century; Tsuji, J., Ed.; Elsevier Science: Switzerland, 1999; p 215; (d) Tamaru, Y. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: New York, 2002; p 1917.
- 3. For the allylic alkylation with a view to palladiumcatalyzed deallylation of allyl alkyl ethers, see: Tsukamoto, H.; Kondo, Y. Synlett 2003, 1061, and references cited therein.
- 4. Takahara, J. P.; Masuyama, Y.; Kurusu, Y. J. Am. Chem. Soc. 1992, 114, 2577.
- 5. Masuyama, Y.; Kaneko, Y.; Kurusu, Y. Tetrahedron Lett. 2004, 45, 8969.
- 6. Masuyama, Y.; Chiyo, T.; Kurusu, Y. Synlett 2005, 2251.
- 7. Ito, A.; Kishida, M.; Kurusu, Y.; Masuyama, Y. J. Org. Chem. 2000, 65, 494.
- 8. To the solution of 1a (1.2 mmol), benzaldehyde (1.0 mmol) and tin(II) chloride (1.2 mmol) in THF (1 mL) and H_2O (0.1 mL) was added $[IrCl(cod)]_2$ (0.01 mmol) , and then the

solution was stirred at 50 $\rm{^{\circ}C}$ for 24 h. The reaction mixture was diluted with $Et₂O$ (120 mL) and washed successively with aq 10% HCl solution (20 mL), aq NaHCO₃ solution (20 mL) , H₂O (20 mL) , and brine (20 mL) . The extracts were dried over anhydrous MgSO4. After evaporation of solvents, purification by column chromatography (silica gel, hexane/EtOAc = 8:1) and/or HPLC (Japan Analytical Industry Co. Ltd., LC-908, JAIGEL-2H; CHCl₃) afforded 1-phenyl-3-buten-1-ol $(2, R = Ph)$ as a colorless oil in 84% yield.

- 9. For direct carbonyl allylations by stoichiometric π -allylmetal compounds, see: (a) Hegedus, L. S.; Wagner, S. D.; Waterman, E. L.; Siirala-Hansen, K. J. Org. Chem. 1975, 40, 593; (b) Faller, J. W.; Nguyen, J. T.; Ellis, W.; Mazzieri, M. R. Organometallics 1993, 12, 1434; (c) Sato, Y.; Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2000, 122, 1624.
- 10. For the suggestion of direct carbonyl allylations with the σ - or π -allylpalladium complexes prepared in situ catalytically, see: (a) Nakamura, H.; Iwama, H.; Yamamoto, Y. J. Am. Chem. Soc. 1996, 118, 6641; (b) Wallner, O. A.; Szabo, K. J. J. Org. Chem. 2003, 68, 2934; (c) Solin, N.; Kjellgren, J.; Szabo, K. J. Angew. Chem., Int. Ed. 2003, 42, 3656; (d) Hopkins, C. D.; Malinakova, H. C. Org. Lett. 2004, 6, 2221.
- 11. For other transition metal-catalyzed carbonyl allylations via transmetalations, see: (a) Sebelius, S.; Wallner, O. A.; Szabo, K. J. Org. Lett. 2003, 5, 3065; (b) Jang, T.-S.; Keum, G.; Kang, S. B.; Chung, B. Y.; Kim, Y. Synthesis 2003, 775; (c) Hirashita, T.; Kambe, S.; Tsuji, H.; Omori, H.; Araki, S. J. Org. Chem. 2004, 69, 5054; (d) Kimura, M.; Shimizu, M.; Tanaka, S.; Tamaru, Y. Tetrahedron 2005, 61, 3705, and references cited therein.